Classical Electrodynamics (Google eBook)

Front Cover
Westview Press, Sep 11, 1998 - Science - 592 pages
1 Review
This text for the graduate classical electrodynamics course was left unfinished upon Julian Schwinger's death in 1994, but was completed by his coauthors, who have brilliantly recreated the excitement of Schwinger's novel approach. "Classical Electrodynamics" captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. An essential resource for both physicists and their students, the book includes a "Reader's Guide," which describes the major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion in, and exclusion from, a given course, depending on the instructor's preference. Carefully constructed problems complement the material of the text, and introduce new topics. The book will be of great value to all physicists, from first-year graduate students to senior researchers, and to all those interested in electrodynamics, field theory, and mathematical physics.
  

What people are saying - Write a review

User Review - Flag as inappropriate

理论层次高于Jackson,但清晰精辟得多

Contents

Magnetic Charge I
17
Macroscopic Electrodynamics
33
Simple Model for Constitutive Relations
45
Magnetic Properties of Matter
63
temperature The solid curves are the plots of the right side
71
Macroscopic Energy and Momentum
75
Review of Action Principles
85
Action Principle for Electrodynamics
97
Macroscopic Current Distributions
319
Magnetic Multipoles
325
Magnetic Scalar Potential
331
Magnetic Charge II
337
RadiationField Point of View
351
RadiationSource Point of View
361
Models of Antennas
367
Spectral Distribution of Radiation
375

Einsteinian Relativity
111
Stationary Principles for Electrostatics
125
Introduction to Greens Functions
137
Electrostatics in Free Space
141
SemiInfinite Dielectric
147
Application of Greens Function
157
Bessel Functions
165
Parallel Conducting Plate
177
Modified Bessel Functions
193
Cylindrical Conductors
205
Spherical Harmonics
231
Coulombs Potential
243
Multipoles
257
Conducting and Dielectric Spheres
265
Dielectrics and Conductors
283
Modes and Variations
295
Magnetostatics
313
Power Spectrum and fierenkov Radiation
385
Constant Acceleration and Impulse
391
Synchrotron Radiation I
401
Synchrotron Radiation IIPolarization
413
Propagation in a Dielectric Medium
427
Reflection by an Imperfect Conductor
445
Waveguides
459
Scattering by Small Obstacles
471
PartialWave Analysis of Scattering
479
Diffraction I
491
Diffraction II
509
Babinets Principle
523
Dispersion Relations for the Susceptibility
539
Charged Particle Energy Loss
545
A Units
555
Copyright

Common terms and phrases

Popular passages

Page 320 - If the thumb of the right hand points in the direction of the current, the other fingers point in the direction of the magnetic field.
Page 447 - LIBRARY the surface is assumed to be free of small-scale roughness, ie, the radius of curvature of the surface is much larger than the wavelength of the incident radiation.
Page 399 - there is no formation of a wave zone nor any corresponding radiation." But he also said parenthetically that radiation does occur when two uniform, rectilinear motions are connected by a "portion
Page 401 - Since the force is always perpendicular to the direction of motion no work is done upon the charge and its speed is unaltered ; only the direction of its motion is changed.
Page 86 - BAF is stationary, ie, 6S = 0, for variations about correct path, provided the initial and final configurations are held fixed. On the other hand, if we permit infinitesimal changes of the trajectories xl(t) at the initial and final times, including alterations of those times, the only contribution to 6S comes from the endpoint variations, or 6S = G(t2)óG(t1).
Page 209 - The trilinear coordinates of a point are the perpendicular distances from the origin to the three lines, drawn through the point, parallel to the sides of the triangle. A coordinate is negative if the associated line lies between the origin and the related side.
Page 19 - The first theoretical calculation of the motion of a charged particle in the presence of a single magnetic pole was performed by Poincare in 1896 to explain recent observations.
Page 66 - The second term in (6.24) involves the intrinsic magnetic moment of the atom, f*0, defined by ."*. (6'25) when ra is the position of the ath particle relative to the center of mass of the atom.
Page 208 - Fig, 19,3; a is the common length of the sides, the length of the perpendicular from any apex to the opposite side is...
Page 561 - JD Jackson, Classical Electrodynamics, John Wiley and Sons, New York, 2nd Edition, 1975.

References to this book

All Book Search results »

About the author (1998)

Julian Schwinger (1918-1994) was born in New York City. He obtained his Ph.D. in Physics from Columbia University in 1939. He also received honorary doctorates in science from Purdue, Brandeis, Harvard, and Gustavus Adolphus College. He taught at the University of California, Los Angeles, from 1972 until his death. In 1965, Dr. Schwinger received (with Richard Feynman and Sin Itiro Tomonaga) the Nobel Prize in Physics for his work in quantum electrodynamics. A National Research Foundation Fellow (1939-1940) and a Guggenheim Fellow (1970), he was the recipient of many awards, including: the First Einstein Prize Award for Physics (1964), and the American Academy of Achievement Award (1987). The late Julian Schwinger shared the 1965 Nobel Prize for Physics with Richard Feynman and Sin-Itiro Tomonaga for their work on the theory of quantum electrodynamics. Lester L. DeRaad, Jr. is Senior Research Specialist at Logicon RDA. Kimball A Milton is Professor of Physics at the University of Oklahoma, Norman. Wu-yang Tsai is Scatterometer Project Engineer and Group Supervisor at the Jet Propulsion Laboratory in Pasadena, California. The late Julian Schwinger shared the 1965 Nobel Prize for Physics with Richard Feynman and Sin-Itiro Tomonaga for their work on the theory of quantum electrodynamics. Lester L. DeRaad, Jr. is Senior Research Specialist at Logicon RDA. Kimball A Milton is Professor of Physics at the University of Oklahoma, Norman. Wu-yang Tsai is Scatterometer Project Engineer and Group Supervisor at the Jet Propulsion Laboratory in Pasadena, California. The late Julian Schwinger shared the 1965 Nobel Prize for Physics with Richard Feynman and Sin-Itiro Tomonaga for their work on the theory of quantum electrodynamics. Lester L. DeRaad, Jr. is Senior Research Specialist at Logicon RDA. Kimball A Milton is Professor of Physics at the University of Oklahoma, Norman. Wu-yang Tsai is Scatterometer Project Engineer and Group Supervisor at the Jet Propulsion Laboratory in Pasadena, California. The late Julian Schwinger shared the 1965 Nobel Prize for Physics with Richard Feynman and Sin-Itiro Tomonaga for their work on the theory of quantum electrodynamics. Lester L. DeRaad, Jr. is Senior Research Specialist at Logicon RDA. Kimball A Milton is Professor of Physics at the University of Oklahoma, Norman. Wu-yang Tsai is Scatterometer Project Engineer and Group Supervisor at the Jet Propulsion Laboratory in Pasadena, California.

Bibliographic information