## Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators: Variational Methods, Waveguides and Accelerators (Google eBook)This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications. A hardcover edition containing additionally the reprints of more than 15 papers by Schwinger on these topics is available separately. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Common terms and phrases

angle angular approximation arbitrary asymptotic Bessel functions boundary condition cavity characteristic impedance charge density circular guide components conductor consider constant coordinates corresponding cross section current density cutoff wavelength cutoff wavenumber cylinder cylinder coordinates deﬁned derived differential equation dominant mode E-mode function eigenfunctions eigenvalue electric and magnetic electric field electromagnetic electron energy density expression ﬁeld ﬁnd ﬁrst Fourier frequency Green’s function H mode half plane harmonic Hence Lagrangian linear longitudinal lower limit magnetic field matrix Maxwell equations mode functions momentum normal obtained orthogonal particle plane wave potential Poynting vector propagation quantities radiation radius Rayleigh’s principle region relation result satisﬁes Schwinger solution stationary symmetry tangential theorem tion transformation transmission line transverse triangle unit length vanishes variational principle vector velocity voltage wave equation waveguide z-axis zero