Introduction to Solid State Physicsproblems after each chapter |
From inside the book
Results 1-3 of 90
Page 106
Values of k outside these limits do not give us anything new : for example , the motions of two successive particles in the chain are described by the ratio un / Unt1 = e - ika , which reduces to – 1 for k = km , so = • k π / α Fig .
Values of k outside these limits do not give us anything new : for example , the motions of two successive particles in the chain are described by the ratio un / Unt1 = e - ika , which reduces to – 1 for k = km , so = • k π / α Fig .
Page 249
There is considerable interest in knowing the value of the Fermi level as a function of the electron ... all n values must then be filled up to ( 10.41 ) ( 8/3 ) np3 = NL " , and so ( 10.42 ) ( np / L ) 2 = ( 3N / 87 ) 35 .
There is considerable interest in knowing the value of the Fermi level as a function of the electron ... all n values must then be filled up to ( 10.41 ) ( 8/3 ) np3 = NL " , and so ( 10.42 ) ( np / L ) 2 = ( 3N / 87 ) 35 .
Page 356
We may obtain a general impression of the impurity levels by using an average value of the anisotropic effective masses : we ... The dielectric constant has the value 15.8 for germanium and 11.7 for silicon ; the values apply with fair ...
We may obtain a general impression of the impurity levels by using an average value of the anisotropic effective masses : we ... The dielectric constant has the value 15.8 for germanium and 11.7 for silicon ; the values apply with fair ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
DIFFRACTION OF XRAYS BY CRYSTALS | 44 |
CLASSIFICATION OF SOLIDS LATTICE ENERGY | 63 |
ELASTIC CONSTANTS OF CRYSTALS | 85 |
Copyright | |
17 other sections not shown
Other editions - View all
Common terms and phrases
alloys applied approximately associated atoms axis band boundary calculated cell chapter charge concentration condition conductivity consider constant crystal cubic density dependence determined dielectric diffusion direction discussion dislocation distribution domain effect elastic electric electron elements energy equal equation equilibrium experimental expression factor field force frequency function germanium give given heat capacity hexagonal holes important impurity increase interaction ionic ions lattice levels London magnetic magnetic field mass material measurements metals method motion normal observed obtained parallel particles Phys physics plane polarization positive possible potential present problem properties range reference reflection region relation resistivity result room temperature rotation shown in Fig simple solid solution space space group specimen structure surface symmetry Table temperature theory thermal tion transition unit usually values vector volume wave zero zone