Page images

Once material properties for a given material construction are available, whether through testing, prediction, or a combination of both, the design analysis proceeds in a normal fashion. The only uniqueness of CC in this regard is its severe planes of weakness when matrix dominated properties control the failure modes. The designer needs to be aware of these planes of weakness so that those stress components are examined carefully and so that proof tests are designed that will demonstrate the failure mode.


1. Hill, R.: Theory of Mechanical Properties of Fibre-Strengthened Materials—I. Elastic Behaviour. J. Mech. & Phys. Solids, vol. 12, 1964, pp. 199-212.

2. Levin, V. M.: Thermal Expansion Coefficients of Heterogeneous Materials. Mekhanika Tverd. Tela, vol. 2, no. 1, 1967. pp. 88-94. (English translation in Mech. Solids, vol. 2, no. 1. 1967, pp. 58-61.)

3. Rosen, B. W.: Thermomechanical Properties of Fibrous Composites. Proc Royal Soc London A. vol. 319. no. 1536. Oct. 6, 1970, pp. 79-94.

4. Rosen, B. Walter: and Hashin. Zvi: Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials. Int. J. Eng. Sci., vol. 8. no. 2, Feb. 1970, pp. 157-173.

5. Picket, G.: Elastic Moduli of Fiber Reinforced Plastic Composites. Proceedings of Fundamental Aspects of Fiber Reinforced Plastic Composites. R. T. Schwartz and H. S. Schwarta. eds., Wright-Patterson Air Force Base, Jan. 1967, pp. 1330.

6. Hashin. Zvi: and Rosen. B. Walter: The Elastic Moduli of Fiber-Reinforced Materials. Trans. ASME. Ser. E: J. Appl. Mech.. vol. 31. no. 2. June 1964, pp. 223-232.

7. Tsai. Stephen W.: Structural Behavior of Composite Materials. NASACR-71, 1964.

8. Adams. Donald F.: Doner. Douglas R.: and Thomas. Rodney L.: Mechanical Behavior of Fiber-Reinforced Composite Materials. AFML-TR-67-96. U.S. Air Force. 1967. (Available from DTIC as AD 654 056.)

9. Chen. C. H.: and Cheng. Shun: Mechanical Properties of Fiber Reinforced Composites. J. Compos. Mater., vol. I. 1967. pp. 30-41.

10. Hashin, Zvi: Theory of Fiber Reinforced Materials. NASA CR-1974, 1972.

11. Jerina, K. L.: Effective Moduli of Three Dimensionally Reinforced Fibrous Materials. Ph.D. Diss., Washington Univ. Sever Inst, of Technology, May 1974.

12. Voigt, W.: Uber die Beziehung Zwischen den Beiden Elastieitatsconstanten Isotroper Korper. Ann. Phys. (Leipzig), vol. 38, 1889, p. 573.

13. Reuss, A.: Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitats-bedingung fur Einkristalle. Z. Angew. Math. & Mech., vol. 9, 1929, p. 49.

14. Paul, B.: Predictions of Elastic Constants of Multiphase Materials. Trans. Metall. Soc. ofAIME, vol. 218, Feb. 1960, pp. 36-41.

15. Pagano, N. J.: Exact Moduli of Anisotropic Laminates. Micromechanics, G. P. Sendeckyj, ed., Academic Press, Inc., 1972.

16. Greszczuk, Longin B.: Mechanics of Failure of Composites. MDC G5365 (Contract N00019-73C-0405), McDonnell Douglas Astronautics Co., May 1974. (Available from DTIC as AD 708 233.)

17. Zimmer, J. E.; White, J. L.; Evangelides, J. S.; and Meyer, R. A.: Carbon NoseTip Materials Technology. Volume 1: Microstructure and Fracture of Carbon Systems. TOR-0076 (6726-02)-2 VOL. 1 (Contract No. F04701-75-C-0076), Aerospace Corp., Sept. 1975. (Available from DTIC as AD B007 379L.)

18. Crose, James G.: Carbon-Carbon Nosetip Program (CCNP). PDA Rep. No. 1021-00-04 (Contract No. N60921-74-C-0158), Prototype Development Assoc., Inc., July 30, 1975. (Available from DTIC as AD B007 054L.)

19. Dow, Norris F.; and Rosen, B. Walter: Zero Thermal Expansion Composites of High Strength and Stiffness. NASA CR-1324, 1969.

20. Rosen, B. Walter; and Shu, Larry S.: On Some Symmetry Conditions for Three Dimensional Fibrous Composites. J. Compos. Mater., vol. 5, Apr. 1971, pp. 279-282.

21. Brazel, James P., ed.: Advanced Hardened Antenna Window Materials Study. AMMRC CTR 72-1, U.S. Army. Feb. 1972. (Available from DTIC as AD 741


22. Kibler, J. J.; and Chatterjee, S. N.: Development of a Minimechanics Model for 3-D CarbonlCarbon Materials. TFR/7510, U.S. Navy, July 1975. (Available from DTIC as AD B008 415L.)

23. Chatterjee, S. N.; and McLaughlin, P. V.: Strength and Thermoelastic Properties of 3-D CarbonlCarbon Composites. TFR 513, Materials Sciences Corp., Oct. 1975.

24. Smith, Robert E.: Ultrasonic Elastic Constants of Carbon Fibers and Their Composites. J. Appl. Phys., vol. 43, no. 6, June 1972, pp. 2555-2565.

25. Schultz, D. A.: Carbon Fiber Property Changes Resulting From Simulated Carbon/Carbon Composite Processing. Proceedings of 18th Biannual Conference on Carbon, Worcester Polytechnic Inst., July 1987, pp. 16-18.

Chapter 7

Manufacturing and Design of
Carbon-Carbon Composites

Robert L. Burns

Fiber Materials, Incorporated

Biddeford, Maine

Introduction 198
Composite Design 200

Discontinuous Reinforcement 200

Filament Wound CC 201

Laminates 202

Through-the-Thickness Reinforced CC 203

Thick-Walled Constructions 204

Design Summary 209
Carbon-Carbon Composite Densification 211

Laminates 212

Thin-Walled 3-D Composites 213

Thick-Walled 3-D Composites 214

Composite Properties 215 References 221

« PreviousContinue »