Page images
PDF
EPUB

Modulus retained, E/Ert

[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

10 20 30 40 50 60 70 80 90 100 Fiber volume, percent

(a) Modulus as function of fiber volume in direction of applied load.

[blocks in formation]

(b) Retention ratio of modulus as function of temperature.

Figure 17. Typical CC properties.

Strength retained, S/Srt

[blocks in formation]

0 10 20 30 40 50 60 70 80 90 100 Fiber volume, percent

(c) Tensile strength as function of fiber volume in direction of applied load.

[blocks in formation]

(d) Retention ratio of tensile strength and compressive strength in direction of applied load.

Figure 17. Continued.

[blocks in formation]

(e) Typical thermal strain of CC as function of temperature.

Figure 17. Concluded.

References

1. DiCristina, V.: Hyperthermal Ablation Performance of Carbon-Carbon Composites. AIAA Paper No. 71-416, Apr. 1971.

2. Arnold, M. R.: Carbon Brakes-Their Development and Service History. World Aerospace Profile 1986, Arthur Reed, ed., Sterling Publ. Ltd. (London), 1986, pp. 237-239.

3. Frye, E. R.: Carbon-Carbon Materials for Ablative Environments. Nucl. Technol., vol. 12, no. 1, Sept. 1971, pp. 93-107.

4. Stoller, H. M.; and Frye, E. R.: Processing of Carbon/Carbon Composites: An Overview. SC-DC-713653, Sandia Labs., Apr. 1971.

5. Mullen, C. K.; and Roy, P. J.: Fabrication and Properties Description of AVCO 3D Carbon/Carbon Cylinder Materials. Materials Review for '72, Volume 17 of National SAMPE Symposium and Exhibition, Soc. of Aerospace Material and Process Engineers, 1972, pp. III-A-TWO-1-III-A-TWO-8.

6. Engineers' Guide to Composite Materials. American Soc. for Metals, c.1987.

7. McAllister, Lawrence E.; and Lachman, Walter L.: Multidirectional CarbonCarbon Composites. Fabrication of Composites, A. Kelly and S. T. Mileiko, eds., Volume 4 of Handbook of Composites, Elsevier Science Publ. Co., Inc., 1983, pp. 109-175.

8. McHenry, M. R.: AFWAL Nosetip Erosion Evaluation Tests in Track G-Data Reduction and Results. TR-82-11/ATD, Acurex Corp., 1982.

9. Stultz, J. W.; and Williams, R. R.: Nose-Tip and Heat-Shield Tests in the Hip Arc Heater Facility. MDC-00608 (Contract No. N60921-75-C-0250), Nov. 1976. (Available from DTIC as AD B016 213L.)

10. Dirling, R. B., Jr.; Kratsch, K. M.; and Jortner, J.: Ablation/Erosion Evaluation of Reentry Vehicle Materials-Volume 1: Nosetip Materials. AFML-TR-76-2, vol. 1, U.S. Air Force, Feb. 1976. (Available from DTIC as AD B012 034L.)

11. Wolf, C. J.; Nardo, C. T.; and Dahm, T. J.: Interim Report Passive Nosetip Technology Program, Volume 22. Coupled Erosion/Ablation of Re-entry Materials. SAMSO-TR-74-86, Acurex Corporation, 1975.

12. McAllister, L. E.; and Taverna, A. R.: Development and Evaluation of Mod 3 Carbon/Carbon Composites. Materials Review for '72, Volume 17 of National SAMPE Symposium and Exhibition, Soc. of Aerospace Material and Process Engineers, 1972, pp. III-A-THREE-1-III-A-THREE-7.

13. McAllister, L. E.; and Taverna, A. R.: A Study of Composition-Construction Variations in 3D Carbon/Carbon Composites. Paper Presented at Pacific Coast Regional Meeting of the American Ceramic Society, Los Angeles, 1974.

14. McAllister, L. E.; and Taverna, A. R.: A Study of Composition-Construction Variations in 3D Carbon/Carbon Composites. Proceedings of the International Conference on Composite Materials, Volume 1, Metallurgical Soc. of AIME, 1976, pp. 307–326.

15. Warren, J. W.; and Williams, R. M.: Isothermal CVD Processing. Non-Metallic Materials Selection, Processing and Environmental Behavior, Volume 4 of National SAMPE Technical Conference Series, Soc. of Aerospace Material and Process Engineers, 1973, pp. 623–633.

16. Wingard, B. L.: Testing and Evaluation of Missile Materials-Task VI: Carbon-Carbon Materials for Space Structures. SRI-MME-89-596-5912-7-XI, Southern Research Inst., 1989.

« PreviousContinue »