Page images
PDF
EPUB

76. Morin, G. R.: Oxidation Resistant Carbonaceous Bodies and Method of Producing. U.S. Patent 3,936,574, Feb. 3, 1976.

77. McKee, D. W.: Borate Treatment of Carbon Fibers and Carbon/Carbon Composites for Improved Oxidation Resistance. Carbon, vol. 24, no. 6, 1986, pp. 737-741.

78. McKee, D. W.: Oxidation Behavior and Protection of Carbon/Carbon Composites. Carbon, vol. 25, no. 4, 1987, pp. 551–557.

79. Luthra, Krishan L.: Oxidation of Carbon/Carbon Composites-A. Theoretical Analysis. Carbon, vol. 26, no. 2, 1988, pp. 217-224.

80. Adams, P. B.; and Evans, D. L.: Borate Glasses. Materials Science Research, Volume 12, L. D. Dye, V. D. Frechette, and N. J. Kreidl, eds., Plenum Press, 1978, pp. 525-537.

81. Meek, Ronald L.: Diffusion Coefficient for Oxygen in Vitreous SiO2. J. American Ceram. Soc., vol. 56, no. 6, June 1973, pp. 341–342.

82. Deal, B. E.; and Grove, A. S.: General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys., vol. 36, no. 12, Dec. 1965, pp. 3770-3778.

83. Lavrenko, V. A.; Pomytkin, A. P.; Kislyj, P. S.; and Grabchuk, B. L.: Kinetics of High-Temperature Oxidation of Boron Carbide in Oxygen. Oxid. Met., vol. 10, no. 2, Apr. 1976, pp. 85–95.

84. Boch, P.; Glandus, J. C.: Jarrige, J.; LeCompte, J. P.; and Mexmain, J.: Sintering. Oxidation and Mechanical Properties of Hot Pressed Aluminum Nitride. Ceram. Int., vol. 8, no. 1, 1982, pp. 34–39.

85. Berard, M. F.: Wirkus, C. D.; and Wilder, D. R.: Diffusion of Oxygen in Selected Monocrystalline Rare Earth Oxides. J. American Ceram. Soc., vol. 51, no. 11. Oct. 1968, pp. 643–647.

86. Smith, A. W.: Meszaros, F. W.; and Amata, C. D.: Permeability of Zirconia, Hafnia, and Thoria to Oxygen. J. American Ceram. Soc., vol. 49, no. 5, Apr. 1966, pp. 240-244.

87. Criscione, J. M.; Mercuri, R. A.: Schram, E. P.; Smith, A. W.; and Volk, H. F.: High Temperature Protective Coatings for Graphite. Tech. Rep. ML-TDR64-173, Part II. U.S. Air Force. Jan. 1965.

88. McKee, D. W.; Spiro, C. L.; and Lamby, E. J.: The Inhibition of Graphite Oxidation by Phosphorus Additives. Carbon, vol. 22, no. 3, 1984, pp. 285–290.

89. McKee, D. W.; Spiro, C. L.; and Lamby, E. J.: The Effects of Boron Additives on the Oxidation Behavior of Carbons. Carbon, vol. 22, no. 6, 1984, pp. 507-511.

90. Langrod, K.; and Jones, R. L.: Impregnation of Graphite With Refractory Carbides. U.S. Patent 3,432,336, Mar. 11, 1969.

91. Strater, H. H.: Oxidation Resistant Carbon. U.S. Patent 3,510,347, May 5, 1970.

92. Leeds, Donald H.; Kelly, Ed; and Heicklen, Julian: Metal-Impregnated Carbons. Ind. & Eng. Chem. Prod. Res. & Dev., vol. 9, no. 4, Dec. 1970, pp. 573-576.

93. DeBrunner, R. E.; and Clements, P. C.: Method of Protecting Carbonaceous Material From Oxidation at High Temperature. U.S. Patent 3,713,882, Jan. 30, 1973.

94. Wilson, W. F.: Oxidation Retardant for Graphite. U.S. Patent 4,439,491, Mar. 27, 1974.

95. Ehrburger, P.; Baranne, P.; and Lahaye, J.: Inhibition of the Oxidation of Carbon-Carbon Composite by Boron Oxide. Carbon, vol. 24, no. 4, 1986, pp. 495-499.

96. Ehrenreich, L. C.: Reinforced Carbon and Graphite Articles. U.S. Patent 4,119,189, Oct. 10, 1978.

97. Shaffer, R. C.: Furfural Alcohol Modified Polyester Resins Containing Metal Atoms. U.S. Patent 4,087,482, May 2, 1978.

98. Shaffer, R. C.: Coating for Fibrous Carbon Material in Boron Containing Composites. U.S. Patent 4,164,601, Aug. 14, 1979.

99. Shaffer, R. C.; and Tarasen, W. L.: Carbon Fabrics Sequentially Resin Coated With (1) a Metal-Containing Composition and (2) a Boron-Containing Composition Are Laminated and Carbonized. U.S. Patent 4,321,298, Mar. 23, 1982.

100. Jawed, I.; and Nagle, D. C.: Oxidation Protection in Carbon-Carbon Composites. Mater. Res. Bull., vol 21, no. 11, 1986, pp. 1391–1395.

101. Lakewood, M. J.; and Taylor, S. A.: Oxidation-Resistant Graphite Article and Method. U.S. Patent 3,065,088, Nov. 20, 1962.

102. Parker, W. E.; and Rakszawski, J. F.: Oxidation Resistant Carbonaceous Bodies and Method for Making. U.S. Patent 3,201,697, July 19, 1966.

103. Goldstein, E. M.; Carter, E. W.; and Kluz, S.: The Improvement of the Oxidation Resistance of Graphite by Composite Technique. Carbon, vol. 4, no. 2, July 1966, pp. 273–279.

104. Zeitsch, K. J.: Oxidation-Resistant Graphite-Base Composites. Modern Ceramics, J. E. Hove and W. C. Riley, eds., John Wiley & Sons, 1967, pp. 314-325.

105. Bortz, S. A.: Testing of Graphite Composites in Air at High Temperatures. Ceramics in Severe Environments, W. Wurth Kriegel and Hayne Palmour III, eds., Plenum Press, 1971, pp. 49–56.

106. Kaae, J. L.; and Gulden, T. D.: Structure and Mechanical Properties of Codeposited Pyrolytic C-SiC Alloys. J. American Ceram. Soc., vol. 54, no. 12, Dec. 1971, pp. 605-609.

107. Reynolds, G. H.; and Kaae, J. L.: Chemical Vapor Deposition of Isotropic Carbon-Zirconium Carbide Fuel Particle Coatings. J. Nucl. Mater., vol. 56, 1975, pp. 239–242.

108. Christin, F.; and Naslain, R.: A Thermodynamic and Experimental Approach to SiC CVD Infiltration of Porous Carbon-Carbon Composites. Chemical Vapor Deposition 1979, T. O. Sedgwick and H. Lydtin, eds., Electrochemical Soc., 1979, pp. 499–514.

109. Christin, F.; Heraud, L.; Choury, J. J.; Naslain, R.; and Hagenmuller, P.: In-Depth CVD of SiC Within Porous Carbon Materials. Chemical Vapor Deposition 1980, H. E. Hintermann, ed., Lab. Suisse de Recherches Horlogeres (Switzerland), 1980, pp. 154–161.

110. Rossignol, J. Y.; Naslain, R.; Hagenmuller, P.; Heraud, L.; and Choury, J. J.: Carbon-Carbon Titanium Carbide Composite Materials Obtained by CVI of Porous Carbon-Carbon Substrates. Chemical Vapor Deposition 1980, H. E. Hintermann, ed., Lab. Suisse de Recherches Horlogeres (Switzerland), 1980, pp. 162-168.

111. Hannache, H.; Quenisset, J. M.; Naslain, R.; and Heraud, L.: Composite Materials Made From a Porous 2D-Carbon-Carbon Preform Densified With Boron Nitride by Chemical Vapour Infiltration. Mater. Sci., vol. 19, no. 1, 1984, pp. 202-212.

112. Stinton, D. P.; Caputo, A. J.; and Lowden, R. A.: Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. American Ceram. Soc. Bull., vol. 65, Feb. 1986, pp. 347-350.

113. Caputo, Anthony J.; Stinton, David P.; Lowden, Richard A.; and Besmann, Theodore M.: Fiber-Reinforced SiC Composites With Improved Mechanical Properties. American Ceram. Soc. Bull., vol. 66, Feb. 1987, pp. 368–372.

114. Stinton, David P.; Besmann, Theodore M.; and Lowden, Richard A.: Advanced Ceramics by Chemical Vapor Deposition Techniques. American Ceram. Soc. Bull., vol. 67, Feb. 1988, pp. 350-355.

115. Chown, J.; Deacon, R. F.; Singer, N.; and White, A. E. S.: Refractory Coatings on Graphite, With Some Comments on the Ultimate Oxidation Resistance of Coated Graphite. Special Ceramics 1962, P. Popper, ed., Academic Press, Inc., 1963, pp. 81-115.

116. Hinze, J. W.; and Graham, H. C.: The Active Oxidation of Si and SiC in the Viscous Gas-Flow Regime. J. Electrochem. Soc., vol. 123, no. 7, July 1976, pp. 1066–1073.

117. Singhal, S. C.: Thermodynamic Analysis of the High-Temperature Stability of Silicon Nitride and Silicon Carbide. Ceramurg. Int., vol. 2, July-Sept. 1976, pp. 123-130.

118. Darling, A. S.: Some Properties and Applications of the Platinum-Group Metals. Int. Metall. Reviews, Sept. 1973, pp. 91–122.

119. Schick, Harold L.: A Thermodynamic Analysis of the High-Temperature Vaporization Properties of Silica. Chem. Reviews, vol. 60, no. 4, Aug. 1960, pp. 331-362.

120. Holcombe, C. E.; Morrow, M. K.; Smith, D. D.; and Carpenter, D. A.: Survey Study of Low-Expanding, High-Melting Mixed Oxides. Rep. Y-1913, Oak Ridge National Lab., 1974.

121. Coutures, Jean Pierre; and Coutures, Juliette: The System HfO2-TiO2. J. American Ceram. Soc., vol. 70, no. 6, June 1987, pp. 383–387.

Chapter 9

Applications of Carbon-Carbon

Louis Rubin*

The Aerospace Corporation
El Segundo, California

Approximately 30 years ago, carbon-carbon (CC) was developed to meet the anticipated needs of the emerging space programs for materials that were resistant to high temperatures and were able to maintain structural integrity while experiencing the thermal stresses of reentry from space. The utility of this material was first demonstrated in a major Space Shuttle application where it performed on the wing leading edge and nose cap thermal protection system. Carbon-carbon technology has matured considerably since the first Space Shuttle application. Although more advanced versions continue to perform well on the Space Shuttle, CC has evolved as a versatile material for a wide variety of new applications.

The key to many of the new uses of CC is in the development of improved oxidation-resistant systems for atmospheric use at high temperatures, of new high-modulus carbon fibers that provide dimensional rigidity and low thermal expansion for structural applications, and of newer matrices based on pitch or advanced high-char yielding resins that result in greater composite integrity and reduced processing time. The newest approach to rapid matrix processing is related to chemical vapor infiltration (CVI), but it is based on a liquid hydrocarbon precursor that is used instead of a gas (ref. 1).

One of the more visible applications of CC is on the wing leading edge and nose cap of the Space Shuttle orbiter (refs. 2 and 3). These components, which LTV Corporation manufactured, are exposed to temperatures up to 2800°F (1538°C) during orbiter entry into the atmosphere; in addition, they must provide thermal protection and maintain structural integrity over multiple missions. Each orbiter wing contains 22 leadingedge CC airfoil panels and 22 sealing strips of CC. The nose cap is 4 ft in diameter and consists of the primary cap and eight circumferential seal

Currently with Research Opportunities, Inc., Torrance, California.

« PreviousContinue »