## Recent Advances In Nonsmooth OptimizationDing-zhu Du, Frank Kwang-ming Hwang, Li-qun Qi, Robert S Womersley Nonsmooth optimization covers the minimization or maximization of functions which do not have the differentiability properties required by classical methods. The field of nonsmooth optimization is significant, not only because of the existence of nondifferentiable functions arising directly in applications, but also because several important methods for solving difficult smooth problems lead directly to the need to solve nonsmooth problems, which are either smaller in dimension or simpler in structure.This book contains twenty five papers written by forty six authors from twenty countries in five continents. It includes papers on theory, algorithms and applications for problems with first-order nondifferentiability (the usual sense of nonsmooth optimization) second-order nondifferentiability, nonsmooth equations, nonsmooth variational inequalities and other problems related to nonsmooth optimization. |

### From inside the book

Results 1-5 of 5

Page 2

This occurs when the values are measurements of squared distances between

points (e.g. atoms, stars, cities) in a Euclidean space. Such a matrix is referred to

as a

...

This occurs when the values are measurements of squared distances between

points (e.g. atoms, stars, cities) in a Euclidean space. Such a matrix is referred to

as a

**Euclidean distance matrix**. Because of data errors such a matrix may not be...

Page 3

One approach [8] is to formulate the

constrained least distance problem in which the constraint is the intersection of

two convex sets. The Dykstra-Han alternating projection algorithm can then be

used to ...

One approach [8] is to formulate the

**Euclidean distance matrix**problem as aconstrained least distance problem in which the constraint is the intersection of

two convex sets. The Dykstra-Han alternating projection algorithm can then be

used to ...

Page 4

It is necessary to distinguish between distance matrices that are obtained in prac

tice and those that can be derived ... A matrix DŁ ]Rn*n is called a

It is necessary to distinguish between distance matrices that are obtained in prac

tice and those that can be derived ... A matrix DŁ ]Rn*n is called a

**Euclidean****distance matrix**iff there exist n points Xi,...,x n irreducibly embedded in IR r (r< n ... Page 5

In matrix notation the vectors x1,..., xn are columns of an m x n matrix X and we

can express p = Xy for some vectory such ... Then D is a

definite).

In matrix notation the vectors x1,..., xn are columns of an m x n matrix X and we

can express p = Xy for some vectory such ... Then D is a

**Euclidean distance****matrix**if D is positive semi-definite on M (or equivalently Z"DZ is positive semi-definite).

Page 7

Ding-zhu Du, Frank Kwang-ming Hwang, Li-qun Qi, Robert S Womersley. Then

the distance matrix DG IRnxn is a

) block D\ in. A. di. QDQ dT 6 (2.10) is positive semi-definite. Proof Because Q is ...

Ding-zhu Du, Frank Kwang-ming Hwang, Li-qun Qi, Robert S Womersley. Then

the distance matrix DG IRnxn is a

**Euclidean distance matrix**iff the (n - 1) x (n — 1) block D\ in. A. di. QDQ dT 6 (2.10) is positive semi-definite. Proof Because Q is ...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

1 | |

18 | |

24 | |

36 | |

Projected Gradient Methods for Nonlinear Complementarity Problems via Normal Maps | 57 |

An NCPFunction and its Use for the Solution of Complementarity Problems | 88 |

An Elementary Rate of Convergence Proof for the Deep Cut Ellipsoid Algorithm | 106 |

Solving Nonsmooth Equations by Means of QuasiNewton Methods with Globalization | 121 |

Generalized Convexity and Higher Order Duality of the Nonlinear Programming Problem with Nonnegative Variables | 224 |

Prederivatives and Second Order Conditions for Infinite Optimization Problems | 244 |

Necessary and Sufficient Conditions for Solution Stability of Parametric Nonsmooth Equations | 261 |

Applications in Nonsmooth Analysis | 289 |

SecondOrder Nonsmooth Analysis in Nonlinear Programming | 322 |

Characterizations of Optimality for Homogeneous Programming Problems with Applications | 351 |

On Regularized Duality In Convex Optimization | 381 |

An Interior Point Method for Solving a Class of LinearQuadratic Stochastic Programming Problems | 392 |

Superlinear Convergence of Approximate Newton Methods for LC1 Optimization Problems without Strict Complementarity | 141 |

On SecondOrder Directional Derivatives in Nonsmooth Optimization | 159 |

On the Solution of Optimum Design Problems with Variational Inequalities | 172 |

Monotonicity and Quasimonotonicity in Nonsmooth Analysis | 193 |

Sensitivity of Solutions in Nonlinear Programming Problems with Nonunique Multipliers | 215 |

A Globally Convergent Newton Method for Solving Variational Inequality Problems with Inequality Constraints | 405 |

Upper Bounds on a Parabolic Second Order Directional Derivative of the Marginal Function | 418 |

A SLP Method with a Quadratic Correction Step for Nonsmooth Optimization | 438 |

A Successive Approximation QuasiNewton Process for Nonlinear Complementarity Problem | 459 |

### Other editions - View all

Recent Advances in Nonsmooth Optimization Dingzhu Du,Liqun Qi,Robert S. Womersley Limited preview - 1995 |

### Common terms and phrases

algorithm Applications approximation assume assumption Banach space BFGS method bounded computing consider constraint qualification convex functions convex set defined Definition denote directional derivative dual duality ellipsoid epi-differentiable equivalent Euclidean distance matrix Example exists feasible finite function f given global convergence Hence holds implies iteration Lemma Let f linear Lipschitz Lipschitz continuous Lipschitzian lower semicontinuous Mathematical Programming minimization monotone multifunction neighborhood Newton method nonempty nonlinear complementarity problem nonlinear programming nonsmooth analysis Nonsmooth Optimization normal cone objective function obtain Operations Research optimal solution optimality conditions optimization problems parametric polyhedral function positively homogeneous programming problems Proof properties Proposition quasi-Newton methods quasimonotone R. T. Rockafellar result satisfied second order second-order semismooth sequence SIAM Journal step subdifferential subgradient sublinear function subset sufficient condition superlinear theory topology triangulation variational inequality vector zero