## Proceedings of the International School of Physics "Enrico Fermi.", Volume 23N. Zanichelli, 1963 - Nuclear physics |

### From inside the book

Results 1-3 of 5

Page 101

One of the most interesting types of collective motion, the description of which

originated in the work of Bohr and

spherical nucleus cannot rotate in quantum mechanics since rotation would not

alter ...

One of the most interesting types of collective motion, the description of which

originated in the work of Bohr and

**Mottelson**, occurs in nonspherical nuclei. Aspherical nucleus cannot rotate in quantum mechanics since rotation would not

alter ...

Page 140

(56.8) from formal considerations following from these facts. REFERENCES [1] S.

Tomonaga: Progr. Theor. Phys. (Kyoto). 13, 407 (1955). [2] J. P. Elliot: Proe. Boy.

Soc., A 245, 128, 562 (1958). [3] A. Boim and B. R.

(56.8) from formal considerations following from these facts. REFERENCES [1] S.

Tomonaga: Progr. Theor. Phys. (Kyoto). 13, 407 (1955). [2] J. P. Elliot: Proe. Boy.

Soc., A 245, 128, 562 (1958). [3] A. Boim and B. R.

**Mottelson**: Ban. Mat. Fys.Page 155

[2] B.

de Physique Theorique » (Paris, 1959). [3] I. Bardeen, L. N. Cooper and J. R.

Schrieffer: Phys. Rev., 108, 1175 (1957). [4] S. T. Belyaev: Mat. Fys. Medd. Dan.

Vid.

[2] B.

**Mottelson**: The ma.y-body problem, in Lectures given at the « Ecole d'Etede Physique Theorique » (Paris, 1959). [3] I. Bardeen, L. N. Cooper and J. R.

Schrieffer: Phys. Rev., 108, 1175 (1957). [4] S. T. Belyaev: Mat. Fys. Medd. Dan.

Vid.

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Lectures | 1 |

G E Brown Collective motion and the application of manybody | 99 |

T Ep icson The compound nucleus and the random phase approximation | 142 |

Copyright | |

1 other sections not shown

### Other editions - View all

### Common terms and phrases

amplitude approximation assume calculated closed shells coefficients commutation compound configuration consider corresponding coupling cross-section define deformed describe determined diagonal dipole dipole strength discuss eigenfunctions eigenstate eigenvalues electron equation excitation energy expectation value experimental factor force gives Green's function ground Hamiltonian harmonic oscillator Hartree-Fock hermitian adjoint hole hyperfine-structure intrinsic irreducible representation isobaric spin isospin isotope shift large number lecture levels linear magnetic matrix elements Ml transitions Mottelson multipole neutron nuclear charge distribution nucleon nucleus number of particles obtained one-particle operator operator F optical potential orbitals orthogonal pair parameters particle-hole interaction perturbation theory Phys physical problem proton quadrupole qualitative quantum number quasi-particle random relation residual interaction resonant rotation rotation group scattering self-consistent shell-model shown single-particle solution spectrum spherical symmetry time-dependent tion total angular momentum two-body two-particle unperturbed variation vector vibrations wave function wave-functions width y-ray zero