## Strength of materials |

### From inside the book

Results 1-3 of 61

Page 100

= —3480 ft-lb 405.

Br ]c ' B 200 lb/ ft 3' 6' 300 lb/ ft 400 lb/ ft «1 Fig. P-406. 4' «2 Fig. P-405. 406.

Ans. Mac - —100x2 + 880x — 400 B 200 lb/ ft | 2' 8' C j 4' I Fig. P-407. Fig. P-408.

408.

Cantilever ...

**Beam loaded**as shown in Fig. P-404. Ans. Mac = 3600 — 230x — 30x2; Max. M= —3480 ft-lb 405.

**Beam loaded**as shown in Fig. P-405. Ans. Max. M = 3456 ft-lbBr ]c ' B 200 lb/ ft 3' 6' 300 lb/ ft 400 lb/ ft «1 Fig. P-406. 4' «2 Fig. P-405. 406.

**Beam loaded**as shown in Fig. P-406. 407.**Beam loaded**as shown in Fig. P-407.Ans. Mac - —100x2 + 880x — 400 B 200 lb/ ft | 2' 8' C j 4' I Fig. P-407. Fig. P-408.

408.

**Beam loaded**as shown in Fig. P-408. Ans. Max. M = 3530 ft-lb 409.Cantilever ...

Page 119

Ferdinand Leon Singer. Fig. P-441. 442.

Ans. Max. M = 1267 ft-lb 443.

= 4720 ft-lb 120 lb/ ft- 60 lb/ft 1200lb 72 lb/ ft 50 lb/ft 6' Fig. P-444. J t- *2 90 lb/ft 6'

180 lb/ ft Fig. P-445. 446.

carrying the triangular load shown in Fig. P-447 is supported on a uniformly

distributed reaction. Ans. Max. M = 7200 ft-lb -240 lb/ ft Fig. P-446. Fig. P-447 and

P-448. 448 ...

Ferdinand Leon Singer. Fig. P-441. 442.

**Beam loaded**as shown in Fig. P-442.Ans. Max. M = 1267 ft-lb 443.

**Beam loaded**as shown in Fig. P-443. Ans. Max. M= 4720 ft-lb 120 lb/ ft- 60 lb/ft 1200lb 72 lb/ ft 50 lb/ft 6' Fig. P-444. J t- *2 90 lb/ft 6'

180 lb/ ft Fig. P-445. 446.

**Beam loaded**as shown in Fig. P-446. 447. A beamcarrying the triangular load shown in Fig. P-447 is supported on a uniformly

distributed reaction. Ans. Max. M = 7200 ft-lb -240 lb/ ft Fig. P-446. Fig. P-447 and

P-448. 448 ...

Page 207

PROBLEMS For each of the beams in the following problems, compute the

moment of area of the M diagram between the reactions about both the left and

the right reaction. 624.

22,500 lb-ft3 400 lb Af = 300 ft-lb 3'. 3' T Fig. P-624. 60 lb 4' } 2' 30 lb/ ft 3' T Fig. P-

625. 625.

by parts from right to left. 626.

Ab-%b ...

PROBLEMS For each of the beams in the following problems, compute the

moment of area of the M diagram between the reactions about both the left and

the right reaction. 624.

**Beam loaded**as shown in Fig. P-624. Ans. (Area.) ab-Za =22,500 lb-ft3 400 lb Af = 300 ft-lb 3'. 3' T Fig. P-624. 60 lb 4' } 2' 30 lb/ ft 3' T Fig. P-

625. 625.

**Beam loaded**as shown in Fig. P-625. Hint: Draw the moment diagramby parts from right to left. 626.

**Beam loaded**as shown in Fig. P-626. Ans. (Area)Ab-%b ...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Other editions - View all

### Common terms and phrases

allowable stresses aluminum angle assumed axes axial load beam in Fig beam loaded beam shown bending bolt cantilever beam caused centroid CN CN column compressive stress Compute the maximum concentrated load concrete cover plate cross section deformation Determine the maximum diameter elastic curve end moments equal equivalent Euler's formula factor of safety fibers flange flexure formula free-body diagram ft long ft-lb Hence hinged Hooke's law horizontal ILLUSTRATIVE PROBLEMS lb/ft length loaded as shown main plate maximum shearing stress maximum stress midspan midspan deflection modulus Mohr's circle moments of inertia neutral axis obtain plane plastic positive product of inertia proportional limit radius ratio reaction Repeat Prob resisting restrained beam resultant segment shaft shear center shear diagram shearing force shown in Fig Solution Solve Prob span static steel strain tensile stress thickness torque torsional uniformly distributed load vertical shear weld zero