## Classical theory of electricity and magnetism: a course of lectures |

### From inside the book

Results 1-3 of 3

Page 21

(For a formal

there may be cases where this integral diverges and thus (7) ceases to be

meaningful but one has still a well defined E and can construct a function 0

satisfying ...

(For a formal

**derivation**of (7) see Chapter 14). However, as we have seen earlierthere may be cases where this integral diverges and thus (7) ceases to be

meaningful but one has still a well defined E and can construct a function 0

satisfying ...

Page 106

m„-i(^),i-o. Thus we get equation (12) with the sign indicated. We may check the

correctness of our calculations as also consistency of our theory by

force between two current circuits by putting the energy expression as given in

the ...

m„-i(^),i-o. Thus we get equation (12) with the sign indicated. We may check the

correctness of our calculations as also consistency of our theory by

**deriving**theforce between two current circuits by putting the energy expression as given in

the ...

Page 313

24 Variational principle formulation of Maxwell's equations & Lagrangian

dynamics of charged particles in electromagnetic fields A convention has

developed of

it has the ...

24 Variational principle formulation of Maxwell's equations & Lagrangian

dynamics of charged particles in electromagnetic fields A convention has

developed of

**deriving**the basic equations of physics from a variational principle^it has the ...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

The empirical basis of electrostatics | 1 |

Direct calculation of fields | 7 |

dipoles9 The Dirac 5function13 | 13 |

Copyright | |

23 other sections not shown

### Other editions - View all

### Common terms and phrases

acceleration angle angular axis boundary conditions calculate called centre charge density charge distribution charged particle coefficient coil components conducting conductor consider coordinates dielectric constant differential dipole direction distance divergence electric and magnetic electric field electromagnetic field electromotive force electron electrostatic energy flux equation 16 expression field due field point finite fluid formula Fourier frame frequency function given gives Hence incident infinite interaction isotropic Laplace's equation linear Lorentz transformation magnetic field magnitude Maxwell's equations medium molecule momentum motion number density obtain orthogonal oscillations permanent magnets perpendicular photon plane plasma point charge polarization potential due Poynting vector radiation field radiation reaction radius refractive index region relation result satisfied scalar shows sin2 solution special theory sphere at infinity spherical surface integral symmetry tensor term theorem theory of relativity transverse uniform vanishes vector potential velocity volume wave length write zero