Photonic Crystals: Molding the Flow of Light  Second EditionSince it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic bandgap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most uptodate, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solidstate physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photoniccrystal slabs, and photoniccrystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new threedimensional photonic crystals, an extensive tutorial on device design using temporal coupledmode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers.

From inside the book
Results 15 of 6
Chapter 5 now contains an expanded section on point defects and a section on
linear defects and waveguides. Chapter 6 was revised considerably to focus on
many new aspects of 3D photonic crystal structures, including the photonic ...
We can use point defects in photonic crystals to trap light, as we have just seen.
By using linear defects, we can also guide light from one location to another. The
basic idea is to carve a waveguide out of an otherwise perfect photonic crystal by
...
Point. Defect. Now that we have reviewed several structures that have photonic
band gaps, we can discuss some of the novel features that result. We have
already seen that defects in photonic crystals can localize light modes. In one ...
Line Defect (missing row of rods) 3D Photonic Crystal 2D Photonic Crystal neg
Ez pos neg Ez pos Figure 17: Horizontal and vertical cross sections (intersecting
at green ... It is tempting to think of the linear defect as a sequence of point
defects.
While there are many ways to create a point defect (by, say, enlarging or
reducing the radius of a hole), we will focus here on one particular choice: we will
change the spacing between one pair of holes. If we increase the spacing from a
to ...