## Foundations of Colloid Science, Volume 2While Volume I stands as an essentially complete advanced textbook of colloidal science, Volume II extends the material to include important new areas, and develops some of the topics in much greater depth. An introductory chapter on the theory of liquids describes the concept of correlation functions and the use of Fourier transforms to analyse the scattering of light and neutrons by colloidal systems. Absorption is given detailed coverage and a chapter on electrokinetics introduces a new approach to time-dependent processes in the double layer. The principles of double layer theory are also used to review the behavior of thin films and emulsions. A final chapter on the rheology of colloidal suspensions calls on many of the concepts developed earlier to bring some cohesion to this important and rapidly developing field. |

### From inside the book

Results 1-3 of 92

Page 677

Note that for the case in which the N ' molecules ' are

dispersion , the quantity U ( 11 , 12 , ... , n ) should be the free energy of that

configuration of

potential ...

Note that for the case in which the N ' molecules ' are

**colloidal**particles in adispersion , the quantity U ( 11 , 12 , ... , n ) should be the free energy of that

configuration of

**colloidal**particles . To proceed it is often assumed that the totalpotential ...

Page 707

In this regard we note that in simulating the dynamical properties of a

system it is obviously not feasible to study the time evolution of the

particles as well as the solvent molecules . Due to the very large difference

between the ...

In this regard we note that in simulating the dynamical properties of a

**colloidal**system it is obviously not feasible to study the time evolution of the

**colloidal**particles as well as the solvent molecules . Due to the very large difference

between the ...

Page 838

In the simplest case of ( partially ) ionized monodisperse

) and counterions ( i = 2 ) without added salt , there will thus be a system of three

equations to solve . This is the so - called primitive model ( PM ) , which may be ...

In the simplest case of ( partially ) ionized monodisperse

**colloidal**particles ( i = 1) and counterions ( i = 2 ) without added salt , there will thus be a system of three

equations to solve . This is the so - called primitive model ( PM ) , which may be ...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Contents of Volume I ix | 675 |

ADSORPTION FROM SOLUTION | 709 |

THE ELECTROKINETIC EFFECTS | 786 |

Copyright | |

8 other sections not shown

### Other editions - View all

### Common terms and phrases

adsorbed adsorption applied approach approximation assumed average becomes behaviour bulk calculated Chapter charge Chem Colloid interface Sci colloidal component concentration constant correlation corresponding density depends described determined developed direction discussed dispersion distance double layer droplets effect electrical electrokinetic electrolyte emulsion energy equation equilibrium estimate et al example Exercise experimental expression factor field film flow fluid force fraction function given gives groups important increases interaction interface involved ions limit liquid material measured microemulsion molecules Note observed obtained occur pair parameters particles phase positive possible potential present pressure problem procedure range reduces referred region result scattering Section separation shear rate shown solution specific spheres stability stress structure surface surface charge surface tension suspension theory thin usually values viscosity volume zero