## Computational materials science: the simulation of materials microstructures and propertiesModeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various microstructural levels and how they can be coupled. This book addresses graduate students and professionals in materials science and engineering as well as materials-oriented physicists and mechanical engineers. |

### From inside the book

89 pages matching **computational materials science** in this book

Where's the rest of this book?

Results 1-3 of 89

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Material Constants A | 1 |

Modeling and Simulation in Materials Science | 13 |

Fundamentals and Solution of Differential Equations | 29 |

Copyright | |

15 other sections not shown

### Common terms and phrases

algorithm approach approximation atoms automaton Burgers vector Cahn calculated cell cellular automata Chapter chemical Chen classical coefficients components computational materials science considered constant coordinates crystal deformation derivatives described deterministic differential equations diffusion discrete dislocation dynamics dislocation line dislocation segments displacement gradient dynamics simulations elastic electron ensemble equations of motion equilibrium evolution expressed Figure finite difference finite element method force free energy function gradient tensor grain boundary grain growth homogeneous Hooke's law Houtte integral interaction interface Ising model isotropic Khachaturyan kinetic Kocks Kubin lattice defects linear matrix mechanics microscopic microstructure simulation molecular dynamics Monte Carlo method neighboring nodes nucleation orientation parameters particle phase field phase space phenomena phenomenological Phys physical plasticity polycrystal potential Potts model predictions probabilistic problem Raabe recrystallization referred Ronnpagel sampling scale shear slip systems solution solving spatial spin Srolovitz stochastic strain rate structure surface Taylor texture theory thermodynamic three-dimensional transformation rules two-dimensional typically values velocity vertex models