## Electrodynamics of continuous mediaCovers the theory of electromagnetic fields in matter, and the theory of the macroscopic electric and magnetic properties of matter. There is a considerable amount of new material particularly on the theory of the magnetic properties of matter and the theory of optical phenomena with new chapters on spatial dispersion and non-linear optics. The chapters on ferromagnetism and antiferromagnetism and on magnetohydrodynamics have been substantially enlarged and eight other chapters have additional sections. |

### From inside the book

Results 1-3 of 77

Page 42

The torque is perpendicular to this plane, and a

formulae (8.10) gives (c- 1)2|1 -3n|ĢE2^sin 2a in[m+l-n][(l-n)e+l+n]' where a is the

angle between the direction of tf and the axis of symmetry of the spheroid, and ...

The torque is perpendicular to this plane, and a

**calculation**of its magnitude fromformulae (8.10) gives (c- 1)2|1 -3n|ĢE2^sin 2a in[m+l-n][(l-n)e+l+n]' where a is the

angle between the direction of tf and the axis of symmetry of the spheroid, and ...

Page 66

medium surrounding the body. Let us suppose that this medium is in mechanical

and thermal equilibrium. Then the

condition of equilibrium (15.18). From this condition, part of the stress tensor (

15.9) ...

medium surrounding the body. Let us suppose that this medium is in mechanical

and thermal equilibrium. Then the

**calculation**is further simplified if we use thecondition of equilibrium (15.18). From this condition, part of the stress tensor (

15.9) ...

Page 127

Since j involves the derivatives of the magnetic field, an allowance for the

currents in

a current, the

Since j involves the derivatives of the magnetic field, an allowance for the

currents in

**calculating**the stresses would ... If the medium is a conductor carryinga current, the

**calculation**differs from that in §15 in that the equation curlH = 0 is ...### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

ELECTROSTATICS OF CONDUCTORS 1 The electrostatic field of conductors | 1 |

2 The energy of the electrostatic field of conductors | 3 |

3 Methods of solving problems in electrostatics | 8 |

Copyright | |

118 other sections not shown

### Other editions - View all

### Common terms and phrases

angle anisotropy anisotropy energy antiferromagnetic atoms averaging axes axis body boundary conditions calculation charge circuit coefficient components conducting conductor constant coordinates corresponding cross-section crystal Curie point curl H current density denote depends derivative determined dielectric differential diffraction dipole direction discontinuity dispersion dissipation distance e(co effect electric field electromagnetic electrons ellipsoid equilibrium expression external field factor ferroelectric ferromagnet field H fluctuations fluid formula free energy frequency function given gives grad Hence incident induction integral isotropic Laplace's equation layer Let us consider linear magnetic field magnitude Maxwell's equations medium neglected non-zero normal obtain optical particle permittivity perpendicular perturbation phase piezoelectric plane polarization Problem propagated properties pyroelectric quantities refraction relation respect result rotation satisfied scattering Solution sphere Substituting suffixes superconducting surface symmetry tangential temperature tensor theory thermodynamic equilibrium thermodynamic potential transition uniaxial uniform values variable velocity wave vector wire z-axis zero