## Physical Properties of Crystals: Their Representation by Tensors and Matrices |

### From inside the book

Results 1-3 of 78

Page 7

leave out the summation sign: Pi=Ttiqi (t,j=l,2,3), (9) and introduce the Einstein

summation convention: when a letter suffix occurs twice in the same term,

summation ...

**Equations**(5) may be written pt or, more compactly, as (»=1,2,3). (8) We nowleave out the summation sign: Pi=Ttiqi (t,j=l,2,3), (9) and introduce the Einstein

summation convention: when a letter suffix occurs twice in the same term,

summation ...

Page 78

as the

of [«y]

charge, p = 0, and (18) reduces to (18) and (19) are the basic

as the

**equation**to be satisfied by the potential <f>. Referred to the principal axesof [«y]

**equation**(17) becomes In a region of the crystal where there is no volumecharge, p = 0, and (18) reduces to (18) and (19) are the basic

**equations**which ...Page 174

Accordingly, considering unit volume, we may write: elasticity thermal expansion'

piezocaloric effect heat capacity In these

Ch. I, § 1.1) applies. Thus the first term on the right of

Accordingly, considering unit volume, we may write: elasticity thermal expansion'

piezocaloric effect heat capacity In these

**equations**the summation convention (Ch. I, § 1.1) applies. Thus the first term on the right of

**equation**(9) stands for the ...### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

THE GROUNDWORK OF CRYSTAL PHYSICS | 3 |

EQUILIBRIUM PROPERTIES | 51 |

ELECTRIC POLARIZATION | 68 |

15 other sections not shown

### Other editions - View all

### Common terms and phrases

angle anisotropic applied axial vector centre of symmetry Chapter coefficients conductivity constant crystal classes crystal properties crystal symmetry cube cubic crystals defined denoted diad axis dielectric direction cosines displacement dummy suffix electric field ellipsoid equal equation example expression follows force given heat flow Hence hexagonal homogeneous indicatrix isothermal isotropic left-handed length longitudinal magnetic magnitude matrix notation measured moduli monoclinic number of independent Onsager's Principle optical activity orientation parallel Peltier permittivity perpendicular photoelastic effect piezoelectric effect plane plate polarization positive principal axes produced pyroelectric pyroelectric effect quantities radius vector referred refractive refractive index relation representation quadric represented right-handed rotation scalar second-rank tensor set of axes shear stress suffix notation surface susceptibility symmetry elements Table temperature gradient tensile stress thermal expansion thermodynamics thermoelectric effects Thomson heat tion transformation law trigonal uniaxial unit volume values written Young's Modulus zero