Nanosystems: Molecular Machinery, Manufacturing, and Computation"Devices enormously smaller than before will remodel engineering, chemistry, medicine, and computer technology. How can we understand machines that are so small? Nanosystems covers it all: power and strength, friction and wear, thermal noise and quantum uncertainty. This is the book for starting the next century of engineering." - Marvin Minsky MIT Science magazine calls Eric Drexler "Mr. Nanotechnology." For years, Drexler has stirred controversy by declaring that molecular nanotechnology will bring a sweeping technological revolution - delivering tremendous advances in miniaturization, materials, computers, and manufacturing of all kinds. Now, he's written a detailed, top-to-bottom analysis of molecular machinery - how to design it, how to analyze it, and how to build it. Nanosystems is the first scientifically detailed description of developments that will revolutionize most of the industrial processes and products currently in use. This groundbreaking work draws on physics and chemistry to establish basic concepts and analytical tools. The book then describes nanomechanical components, devices, and systems, including parallel computers able to execute 1020 instructions per second and desktop molecular manufacturing systems able to make such products. Via chemical and biochemical techniques, proximal probe instruments, and software for computer-aided molecular design, the book charts a path from present laboratory capabilities to advanced molecular manufacturing. Bringing together physics, chemistry, mechanical engineering, and computer science, Nanosystems provides an indispensable introduction to the emerging field of molecular nanotechnology. |
From inside the book
Results 1-3 of 90
8 ) pique which ( in the classical approximation ) can be used as the value of the
partition function in Eqs . ( 4 . 3 ) through ( 4 . 6 ) . In nanomechanical design , a
common concern is the probability that a thermally excited system will be found in
...
In elastic systems in the classical regime , positional variance is proportional to
compliance and to temperature . Quantum effects in elastic systems increase the
variance over the classical value , and contribute a greater fraction of the
variance ...
... classical partition function ( Section 4 . 3 . 2 ) describing the system when
confined to the region of potential well 1 , and q * is the classical partition function
describing a hypothetical system constrained to move along the transition surface
.
What people are saying - Write a review
Contents
Classical Magnitudes and Scaling Laws | 23 |
Potential Energy Surfaces | 36 |
Molecular Dynamics | 71 |
Copyright | |
27 other sections not shown